Wick–Malliavin approximation to nonlinear stochastic partial differential equations: analysis and simulations

نویسندگان

  • D. Venturi
  • X. Wan
  • R. Mikulevicius
  • B. L. Rozovskii
چکیده

469 2013 Proc. R. Soc. A D. Venturi, X. Wan, R. Mikulevicius, B. L. Rozovskii and G. E. Karniadakis and simulations stochastic partial differential equations: analysis Malliavin approximation to nonlinear − Wick References 1.full.html#ref-list-1 http://rspa.royalsocietypublishing.org/content/469/2158/2013000 This article cites 24 articles Email alerting service here the box at the top right-hand corner of the article or click Receive free email alerts when new articles cite this article sign up in

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Wick-Malliavin Approximation to Nonlinear SPDEs with Discrete Random Variables

We propose an adaptive Wick–Malliavin (WM) expansion in terms of the Malliavin derivative of order Q to simplify the propagator of general polynomial chaos (gPC) of order P (a system of deterministic equations for the coefficients of gPC) and to control the error growth with respect to time. Specifically, we demonstrate the effectiveness of the WM method by solving a stochastic reaction equatio...

متن کامل

APPROXIMATION OF STOCHASTIC PARABOLIC DIFFERENTIAL EQUATIONS WITH TWO DIFFERENT FINITE DIFFERENCE SCHEMES

We focus on the use of two stable and accurate explicit finite difference schemes in order to approximate the solution of stochastic partial differential equations of It¨o type, in particular, parabolic equations. The main properties of these deterministic difference methods, i.e., convergence, consistency, and stability, are separately developed for the stochastic cases.

متن کامل

Dhage iteration method for PBVPs of nonlinear first order hybrid integro-differential equations

In this paper, author proves the algorithms for the existence as well as the approximation of solutions to a couple of periodic boundary value problems of nonlinear first order ordinary integro-differential equations using operator theoretic techniques in a partially ordered metric space. The main results rely on the Dhage iteration method embodied in the recent hybrid fixed point theorems of D...

متن کامل

Weak approximation of stochastic partial differential equations: the nonlinear case

We study the error of the Euler scheme applied to a stochastic partial differential equation. We prove that as it is often the case, the weak order of convergence is twice the strong order. A key ingredient in our proof is Malliavin calculus which enables us to get rid of the irregular terms of the error. We apply our method to the case a semilinear stochastic heat equation driven by a space-ti...

متن کامل

Malliavin Calculus for Backward Stochastic Differential Equations and Application to Numerical Solutions

In this paper we study backward stochastic differential equations with general terminal value and general random generator. In particular, we do not require the terminal value be given by a forward diffusion equation. The randomness of the generator does not need to be from a forward equation, either. Motivated from applications to numerical simulations, first we obtain the Lp-Hölder continuity...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013